A new model of filtration and macromolecules transport across capillary walls

نویسندگان

  • Laura Facchini
  • Alberto Bellin
  • Eleuterio F. Toro
چکیده

Metabolic substrates, such as oxygen and glucose, are rapidly delivered to the cells of large organisms through filtration across microvessels walls. Modelling this important process is complicated by the strong coupling between flow and transport equations, which are linked through the osmotic pressure induced by the colloidal plasma proteins. The microvessel wall is a composite media with the internal glycocalyx layer exerting a remarkable sieving effect on macromolecules, with respect to the external layer composed by the endothelial cells. The physiological structure of the microvessel is represented as the superimposition of two membranes with different properties; the inner membrane represents the glycocalyx, while the outer membrane represents the surrounding endothelial cells. Application of the mass conservation principle and thermodynamic considerations lead to a model composed by two coupled second-order partial differential equations in the hydrostatic and osmotic pressures, one expressing volumetric mass conservation and the other, which is non-linear in the unknown osmotic pressure, expressing macromolecules mass conservation. Despite the complexity of the system, the assumption that the properties of the layers are piece-wise constant allows us to obtain analytical solutions for the two pressures. This solution is in agreement with experimental observations, which contrary to common belief, show that flow reversal cannot occur in steady-state conditions unless the hydrostatic pressure in the lumen drops below physiologically plausible values. The observed variations of the volumetric flux and the solute mass flux in case of a significant reduction of the hydrostatic pressure at the lumen are in qualitative agreement with observed variations during detailed experiments reported in the literature. On the other hand, homogenising the microvessel wall into a single-layer membrane with equivalent properties leads to a very different distribution of pressure across the microvessel walls, not consistent with observations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of molecular configuration on the passage of macromolecules across the glomerular capillary wall

The influence of molecular configuration on the filtration of macromolecules across glomerular capillary walls was examined by comparing fractional clearances of two uncharged polysaccharides of distinctly different molecular configuration in the Munich-Wistar rat. The macromolecules employed were dextran, a slightly branched polymer of glucopyranose, and ficoll, a highly cross-linked copolymer...

متن کامل

Permselectivity of the glomerular capillary wall to macromolecules. I. Theoretical considerations.

The transport of macromolecules across the renal glomerular capillary wall has been described theoretically using flux equations based on (a) restricted transport through small pores, and (b) the Kedem-Katchalsky formulation. The various assumptions and limitations inherent in these two approaches are discussed. To examine the coupling between macromolecular solute transport and the determinant...

متن کامل

Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability

BACKGROUND Much of our current understanding of microvascular permeability is based on the findings of classic experimental studies of blood capillary permeability to various-sized lipid-insoluble endogenous and non-endogenous macromolecules. According to the classic small pore theory of microvascular permeability, which was formulated on the basis of the findings of studies on the transcapilla...

متن کامل

An electrodiffusion-filtration model for effects of endothelial surface glycocalyx on microvessel permeability to macromolecules.

Endothelial surface glycocalyx plays an important role in the regulation of microvessel permeability by possibly changing its charge and configuration. To investigate the mechanisms by which surface properties of the endothelial cells control the changes in microvessel permeability, we extended the electrodiffusion model developed by Fu et al. [Am. J. Physiol. 284, H1240-1250 (2003)], which is ...

متن کامل

Computational simulations of nanoparticle transport in a three-dimensional capillary network

Objective(s): Multifunctional nanomedicine is the new generation of medicine, which is remarkably promising and associated with the minimum toxicity of targeted therapy. Distribution and transport of nanoparticles (NPs) in the blood flow are essential to the evaluation of delivery efficacy. Materials and Methods: In the present study, we initially designed a phantom based on Murray’s mini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013